Chapter 7 JUNE AND JULY.

Lindia Torulosa-?cistes Crystallinus-A professor of deportment on stilts-Philodina-Changes of form and habits-Structure of Gizzard in Philodina family-Mr. Gosse's description-Motions of Rotifers-Indications of a will-Remarks on the motions of lower creatures-Various theories-Possibility of reason-Reflex actions Brain of insects-Consensual actions-Applications of physiological reasoning to the movements of Rotifers and Animalcules.

PRESSURE of other occupations prevented full use being made of June and July, nor was the weather at all propitious. For this reason the microscopic doings of these two months are recorded in one chapter.

As usual the Kentish Town ponds were productive of objects, and among them were several rotifers not found in the previous months. The first of these was a very small worm-like thing, with one eye, a tuft of cilia about the mouth, and two toes at the tail end. Had it not been for the jaws, which were working like fingers thrust against each other, and which were unmistakably of the rotifer pattern, the animal might have been supposed to belong to some other class. According to the 'Micrographic Dictionary,' the Lindia torulosa is 1-75" long, but this specimen was only about 1-200". It was possibly very young, and did not thrust out its cilia in two distinct tufts, as Cohn describes, although it may have had the power of doing so. At times it sprang quickly backwards and forwards, bringing its head where its tail was before. This object required for its comfortable elucidation a power of about six hundred linear.

?cistes crystallinus.

Among the common water-plants, which are worth examining as the probable abodes of rotifers or infusoria, is the pretty little thing called "star-weed," some of which was obtained from the last-mentioned ponds, and on examination yielded a specimen of a tube-dwelling rotifer, the ?cistes crystallinus, which, although less beautiful than the Floscules or the Melicerta, is, nevertheless, a pretty and interesting object. In this instance a little rough dirty tube, about 1-70" long, was observed to contain an animal capable of rising up and expanding a round mouth garnished with a wreath of cilia; while a little below, the indefatigable and characteristic gizzard of the tribe was in full play. A power of two hundred and forty linear sufficed to afford a good view, and it was seen that a long, irregular, conical body was supported upon a short wrinkled stalk. The usual drawings represent this creature with a short bell-shaped body upon a very long slender pedicle. Possibly this one might have been able to show himself under this guise, but he did not attempt it; his appearance being always pretty much as described, which made the foot shorter and the body longer than the measurements which naturalists have given, and according to which the whole creature is 1-36" long, although the body is only 1-140". The tube of the ?cistes is called a "lorica," or carapace; but it has in truth no right whatever to the appellation.

Another strange rotifer, of whose name I am uncertain, had an ovalish oblong body, and a pair of legs like compasses, twice as long as himself. His antics were those of a posture-master, or "Professor of Deportment" on stilts. Sometimes he stood bolt upright, bringing his legs close together; then they were jauntily crossed, and the body carried horizontally; then the two legs would be slightly opened, and the body thrown exactly at right-angles to them. These antics were repeated all the while the observation lasted, and had a very funny effect in proving that drollery is practised, if not understood, in the rotatorial world.

Philodina (swimming).

Another kind of rotifer was abundant-the Philodina, which belongs to the same family as the common wheel-bearer, namely, the Philodin?a. The Philodina is a good deal like the common wheel-bearer, or Rotifer vulgaris, but is usually of a stouter build, and carries his eyes in a different place. In the common rotifer these organs are situated on the proboscis, while those of the Philodina are lower, and said to be "cervical." The changes of form in this rotifer are still more remarkable than in the common wheel-bearer. When resting it resembles a pear-shaped purse, puckered in at the mouth. Then it thrusts out its tail-foot, swells its body to an oval globe, protrudes its feeler, and slightly exposes a row of cilia. After this two distinct wheels are everted, and as their cilia whirl and spin, the animal is swiftly rowed along, until it thinks proper to moor itself fast by the tail-foot, and employ all its ciliary power in causing currents to converge towards its throat. When it pleases it can elongate the body, till it becomes vermiform, and it walks like the common rotifer, by curving its back, and bringing its nose and its tail in contact with the ground.

Philodina (crawling).

The gizzard of this family (Philodin?a) presents a considerable deviation from the perfect form exhibited by the Brachions. According to Mr. Gosse, "The mallei and the incus (terms already explained) are soldered together into two subquadrantic-globular masses, which appear to be muscular, but invested with a solid integument. The manubria (handles) may still be recognised in a vertical aspect as three loops, of which the central one is chiefly developed, and in a vertical aspect as a translucent reniform (kidney-shaped) globe." These descriptions are not easy to understand, not from any want of clearness or precision in the words employed, but from the complicated character of the organ, and its very different appearance under different aspects. To make the matter more intelligible, Mr. Gosse adds, "the structure and action of an apparatus of this type may be made more clear by a homely illustration. Suppose an apple to be divided longitudinally, leaving the stalk attached to one half. Let this now be split again longitudinally so far as the stalk, but not actually separating either portion from it. Draw the two portions slightly apart, and lay them down on their rounded surfaces. They now represent the quadrantic masses in repose, the stalk being the fulcrum, and the upper surfaces being crossed by the teeth. By the contraction of the muscles, of which they are composed, the two segments are made to turn upon their long axis, until the points of the teeth are brought into contact, and the toothed surfaces rise and approach each other. The lower edges do not, however, separate as the upper edges approach, but the form of the mass alters, becoming more lenticular, so that when the toothed surfaces are brought into their closest approximation, the outline has a subcircular figure. It is on account of this change of form that I presume the masses themselves to be partially composed of muscle."

These remarks, although specially made of the Rotifer macrurus, are in the main applicable to all the Philodinas, but the student must not expect to understand any of the complicated gizzards of the rotifers without repeated observations, and no small exercise of patience. It is common to call the portions of the Philodine-pattern gizzard "stirrup-shaped," but Mr. Gosse has shown them to be quadrantic, that is, shaped like the quarter of a sphere.

As we are not very well off with subjects for description in these two months, we can afford a little time to consider a question that continually arises in the mind, on viewing the movements of animalcules, and especially of any so highly developed as the rotifers, namely, to what extent motions which appear intelligent are really the result of anything like a conscious purpose or will. When any of the lower animals-a bee, for example-acts in precisely the same way as all bees have acted since their proceedings have been observed, we settle the question by the use of the term instinct. Those who take the lowest view of insect life, assume that the bee flies because it has wings, but without wishing to use them, and that the nerves exciting them to action are in their turn excited, not by volition, but by some physical stimulus.

The sight or the smell of flowers is thought by the same reasoners to be capable of attracting the insect, which is unconscious of the attraction, while proximity of food stimulates the tongue to make the movements needful for its acquisition, and so forth. The cells, they tell us, are built according to a pattern which the earliest bee was impelled to construct by forces that bear no analogy to human reason and human will, and so originate all the ordinary processes of bee life. Sometimes, however, it happens that man or accident interposes particular obstacles, and forthwith there appears a particular modification of the orthodox plan, calculated to meet the special difficulty. How is this? Does any one of the difficulties which the bee or the ant is able to get over, produce precisely that kind of electrical disturbance, or polar arrangement of nerve particles that is necessary to stimulate the first step of the action by which the difficulty is surmounted; and does the new condition thus established stimulate the second step, and so forth, or can the bee, within certain limits, really think, design, and contrive?

No questions are more difficult of solution; but while protesting against a tendency to undervalue all life below that of man, we must remember we have in our bodies processes going on which are not the result of volition, as when the blood circulates, and its particles arrange themselves in the pattern required to form our tissues and organs, and also that many of our actions belong to the class termed by physiologists, "reflex," that is, the result of external impressions upon the nervous system, in which the sentient brain takes no part. Thus when a strong light stimulates the optic nerve, the portion of brain with which it is connected in its turn stimulates the iris to contract the pupil; and it is supposed that after a man has begun to walk, through the exercise of his will, he may continue to walk, by a reflex action; as his feet press the ground they transmit an impression to the spinal cord, and the legs receive a fresh impulse to locomotion, although the mind is completely occupied with other business, and pays no attention to their proceedings.[14] The ordinary movements of insects appear to be of this character, and to be excited by the ganglia belonging to the segment to which the moving limbs are attached. Thus a centipede will run, after its head has been cut off, and a water-beetle (Dytiscus) swam energetically when thrown into water after its brain had been removed.[15]

[14] See Carpenter's 'Manual of Physiology.'

[15] Carpenter's 'Manual of Physiology,' p. 551.

It must not, however, be assumed that the brain of insects has nothing to do with their movements. It is probably the means of co-ordinating or directing them to a common end, and gives rise to what are called consensual movements, that is, movements which are accompanied or stimulated by a sensation, although not controlled by a will. In man these actions are frequently exhibited, "as when laughter is provoked by some ludicrous sight or sound, or by the remembrance of such at an unseasonable hour."[16] Sneezing is another instance of a sensation leading to certain motions, without any intervention of the human will.

[16] Ibid., p. 543.

Speaking of these consensual motions, Dr. Carpenter observes, "It is probable, from the strong manifestations of emotion, exhibited by many of the lower animals, that some of the actions which we assemble under the general designation of instinctive are to be referred to this group."

The insect brain is composed of a supra-?sophagal ganglion and infra-?sophagal one. Von Siebold says, the first corresponds to the cerebrum of the vertebrata, and "the second is comparable, perhaps, to the cerebellum or spinal cord."[17] The superior ganglion gives off nerves to the antenn? and eyes, the lower one to the mandibles, &c. So far as is known the insects that exhibit the most intelligence have the largest and best developed brains.

[17] 'Anatomy of Invertebrates,' Burnett's trans.

A special volume would be required for anything like a complete examination of the little which is known on this subject, but these few remarks may assist the microscopic beginner in examining the movements of his subjects, and guard against the error of referring to reason and volition those which are, probably, either the direct result of stimulants applied to the surface (as in nerveless creatures), or the indirect (reflex) result of such stimulants in beings like the rotifers, who have a nervous system; or the result of sensations, which excite actions without previously referring the matter to the decision of a will. It must not, however, be too readily assumed that the behaviour of creatures possessing distinct organs is entirely automatic; and we must not forget that even the best physiologists know very little concerning the range of functions which the nervous ganglia of the invertebrata are able to discharge.

* * *

            
            

COPYRIGHT(©) 2022