/0/7387/coverbig.jpg?v=e48b664dd2ebccdbba4624c45e4a24e1)
General Remarks on War Development.
In dealing with the story of the beginnings of aviation and the evolution of aircraft up to the war, we have seen that though its growth was infinitesimal compared with that which came with the impetus of war, the air service took definite and practical shape more rapidly than had up to that time any other arm of the Army or Navy in peace.
In 1914 we had reached a point where we possessed a small but mobile and efficient flying force, equipped and trained essentially for reconnaissance. Although experiments had been made, little had been achieved in the use of wireless from aircraft, air photography, bomb dropping, armament or the development of air fighting. As with the Army and Navy, war quickened and expanded all the attributes of air operations in a way which could not have been foreseen before the struggle occurred; and, as it would have been impossible for the Army and Navy to build up their war organization without the foundation of the pre-war service, so it was the splendid quality of the original Royal Flying Corps that made this expansion possible.
Before the war the Royal Flying Corps was considerably smaller than the air services of either France or Germany, and to attain even the strength with which the Military Wing left England the bulk of the trained officers and men, and almost all the machines fit for service, had to be taken. When I started to raise the Corps, in May, 1912, the War Office estimated that its organization, (of a headquarters and seven aeroplane and one airship squadrons) would take at least four years; instead, there had been little more than two. Even at the risk of leaving insufficient personnel and material behind to form and train new squadrons, I recommended that four complete squadrons (including the wireless machines which had to be thrown in to make up the numbers) should be sent overseas to help the British Expeditionary Force in bearing the brunt of the terrific blow that was to come. It was a very serious matter that so little could be left with which to carry on in England, but we considered it essential to dispatch at once to France every available machine and pilot, because both political and military authorities were of opinion that for economic and financial reasons a war with a great European power could not last more than a few months. Another reason was that those of us who had been at the Staff College during the few years before the war, or who had recently served on the General Staff at the War Office, believed that the weight of the German attack would be made through Belgium, where, owing to the enclosed nature of the country, cavalry would be at a disadvantage, and we realized therefore, and urged, the great effect which the air would have from the commencement of operations-a view which was not widely held, especially among senior officers in the Army. We also felt the necessity of using our maximum air strength from the outset, so as to prove its supreme importance as quickly and practically as possible. It required the Retreat from Mons before even G.H.Q. as a whole would accept the fact, though Colonel Macdonogh, the head of the intelligence section, was our firm ally. The iron of confidence, both to used and user, had to be welded with the first great blows on the anvil of war. For these reasons it was vital that every available trained pilot and suitable machine should be employed with the Army, even at the danger of serious initial depletion at Home. The smooth progress of expansion was largely attributable alike to the strength of the pre-war spirit, organization and training,[2] and to the results actual and moral obtained by the first four squadrons during the Retreat and the following weeks of the war under centralized control. The French distributed their "Escadrilles," which were approximately of the size of our "flight," from the beginning, and it is probable that one cause of failure in the German air service during the same period lay in the initial dispersion of units and lack of unified control by the higher command. The British Expeditionary Force having been saved during the Retreat, Paris having been saved at the Marne, the great German army having made a retirement, a lengthy war of position having become obvious, confidence in the air service, both within and without, having been established, the centralized system necessarily adopted up to that time could be relaxed, and we were able to send home officers and men with greatly increased experience to help build up the many new squadrons which would be required to co-operate with the new armies.
[2] On October 17, 1914, Sir J. French wrote: "Such efficiency as the R.F.C. may have shown in the field is, in my opinion, principally due to organization and training."
Gradually, as the numbers in the field permitted, increased duties were undertaken. The Army, though it did not do so at first, yet came to understand the immense importance to itself of air reconnaissance. So much so indeed that our machines and pilots were generally many too few to attempt more than the absolute essentials, and calls were often made upon them which were beyond their strength to meet. An ironic contrast to this was supplied, however, at the evacuation of the Dardanelles, where I was commanding the air service (the R.N.A.S.), and was asked to be careful not to do too much air work. This at a time when through stress and strain and loss we had, I think, a total of five machines left able to take the air!
Observation was, and remains, the prime purpose for which the Royal Flying Corps was formed. 1914 was a year of reconnaissance, but with the advent of trench warfare at the Battle of the Aisne, the first attempts were made to extend its scope by the use of wireless for artillery co-operation, and by air photography, both of which developed rapidly. Headway was also being made with bombing. Then machines carrying out their special duties had to be protected, while it became necessary to prevent hostile machines from effecting similar functions, with the result that 1915 saw the beginnings of systematic air fighting.
In 1915 the easily man?uvrable Fokker, with its machine-gun synchronizing gear for firing through the propeller, gave the Germans a temporary lead, but by the Battle of the Somme this was outclassed and in 1916 our air superiority became marked. The Royal Flying Corps was by that time organized into Brigades and Wings, one Wing operating with each Army for fighting and distant reconnaissance, and one Wing with each Corps for short reconnaissance and such specialized work as artillery co-operation and contact patrols. Both types of machine took part in bombing operations.
There is generally perhaps a tendency, when reviewing the army and air effort in the war, to deal almost entirely with the Western Front and to forget the prodigious work done in many other theatres.
In 1915 the Royal Naval Air Service carried out all air work with the Army and Navy in the Gallipoli campaign and showed how a single air force could effect really important co-operation with both services. In addition to the normal duties of co-operation with the Army and the Fleet, and in spite of the difficulties of transport, supply and workshop arrangements, photographs were taken from the air of the greater part of the Peninsula, and the original inaccurate maps corrected therefrom; frequent bombing raids were carried out against objectives on the Peninsula, the Turkish lines of communications, and even Constantinople itself. In this campaign, too, torpedoes were used for the first time by aircraft and three ships were destroyed in the Dardanelles by this means. The distance from the hub of affairs, a line of supply about 6,000 miles in length, sickness and the climatic and geographical conditions rendered maintenance very difficult. Sand and dust driven in clouds by high winds greatly shortened the working life of engines. The heat during the summer caused the rapid deterioration of machines, while long oversea flights entailed loss from forced landings. There are many aspects of the deepest interest to be brought out when a complete history of the Campaign in Gallipoli comes to be written. It is true that the Allies would have lost all if they had been defeated in the west, and that the call of the Armies for more and more men and munitions for that theatre was insistent; it is equally true, however, that in France there could be nothing but batter and counter-batter, and the only remaining point where strategic principles could be brought to bear was at the Dardanelles. But what is more relevant to the subject of these pages is that when in future years the story of Helles and Anzac and Suvla is weighed, it will, I think, appear that had the necessary air service been built up from the beginning and sustained, the Army and Navy could have forced the Straits and taken Constantinople. I insistently urged the dependence of the naval and military forces upon air assistance and the necessity for carrying out a strong aerial offensive, especially by bombing, for which the local conditions governing the enemy operations on the Peninsula offered exceptional advantages.
From the autumn of 1915 onwards Egypt became the centre of training and expansion for operations in the Middle East and, as the organization developed, a brigade was formed with Wings in Macedonia, Sinai and a training Wing, which by 1918 had become a training brigade, in Egypt. The work of the Wing sent to Sinai in 1916, and expanded in 1917 into a brigade, is well summarized in the following extract from a telegram received from Egypt on October 3rd, 1918:-
"Before operations commenced our mastery of the air was complete and this was maintained throughout, enabling the cavalry turning movement to be completely protected and concealed. Enemy retreating columns were so effectively machine gunned and bombed by offensive machines that in all three cases the surviving personnel abandoned their vehicles and consequently upset all plans of retirement. An enemy column thus abandoned was seven miles in length."
The Wings in Macedonia and Mesopotamia, though they could not beat the record of the Palestine Brigade, gained a marked supremacy over the enemy. Air operations in East Africa were originally carried out by the Royal Naval Air Service with seaplanes, which in 1915 were brought up to the strength of two squadrons and replaced by aeroplanes under the orders of the military forces, their duties being carried out under the difficult conditions of bush warfare. Valuable work was also done by the Royal Flying Corps squadrons which were sent out to operate in the south.
In addition to these major operations, air forces were used in the expeditions on the Indian frontier, against Darfur and in the vicinity of Aden. Five squadrons were sent to Italy after the Italian retreat from the Isonzo and took a prominent part in the final Austrian defeat; a Royal Air Force contingent was sent to Russia to operate from Archangel; and material assistance was given to France and the other Allies, but especially to the United States in the training and equipment of her air forces.
At the beginning of 1918 the Royal Flying Corps and the Royal Naval Air Force were amalgamated and the Royal Air Force came into existence, and during the year achieved a supremacy more complete than that at any time since the Somme.
The following description gives a vivid idea of air activity at the front in 1918:-
"All day long there were 'dog fights' waged at heights up to three or four miles above the shell-torn battlefields of France, whilst the low-flying aeroplanes were attacking suitable targets from the height of a few dozen feet. Passing backwards and forwards went the reconnaissance machines and the bombers, and along the whole front observers were sending out by wireless to the artillery the point of impact of their shells. Such was the picture of the air on any fine day at the time."
1918, however, saw not only the accumulative effect of the tactical co-operation of aircraft with our armies in the field, but also the formation of the Independent Air Force and the carrying out of the strategic air offensive against centres of war industry in the interior of Germany.
A vast organization was also required at Home to meet the rapid expansion of units in the Field and to supply reinforcements. Thus at the Armistice there were 199 training squadrons, the pupils under instruction including cadets numbered 30,000, and during the war some 22,000 graduated as efficient for active service. At the beginning of the war pilots were sent overseas with only 11 hours' flying experience. This was much too little and there is no doubt that increased training would have ensured fewer casualties. Fortunately, however, the length of training was increased in the latter part of the war and a remarkable advance in training was made possible by the use of an entirely new and extraordinarily efficient system of instruction evolved by Smith-Barry.
The war demonstrated the beginnings of what air power meant, though in November, 1918, it was still in its infancy. Before many years the ability to make war successfully, or even at all, will depend upon air power.
Let us now briefly survey the development of the several duties of aircraft, the evolution of machines and progress in tactics, strategy and the organization of our Air Forces during the war.
I had recognized the great difficulty of mobilizing with the clockwork precision of older units and, in the belief that war was coming, had ordered a provisional mobilization of the Corps some days before it was actually declared. Thanks to this step and to the work done at our Concentration Camp at Netheravon in June, 1914, the greater part of the Royal Flying Corps was enabled to concentrate without hitch at our aerodrome at Dover, and the machines flew via Calais to Amiens on August 13th.
Co-operation with the Army.
Reconnaissance.
In the event of France and England declaring war concurrently against Germany, the strategic plan agreed to by the British and French general staffs before the war had been that the British Expeditionary Force should be moved to the Le Cateau, Maubeuge, Mons, area and take up a line on the left flank of the French Army near Mons. But England had withheld her declaration until three days after the French, and on landing in France the first words I heard said by a Frenchman were: "Oui, l'armée anglaise arrive mais on a manqué le premier plan." It was not until after the arrival of G.H.Q. at Amiens on August 14th that, although late, it was decided that the advanced line should be taken up. The Royal Flying Corps moved by air and road to an existing aerodrome outside the antique defences of Maubeuge 12 miles from Mons on the 16th. On the 19th the first reconnaissance was carried out, and the entire country over which the German armies were advancing, as far as Brussels and Louvain, was kept under observation. One of the best reconnaissances ever made was that of August 21st, which discovered the 2nd German Corps moving from Brussels through Ninhove and Grammont.
From Maubeuge we had to retire on the 24th to Le Cateau, on the 25th to St. Quentin, on the 26th to La Fère, on the 28th to Compiègne, on the 30th to Senlis, on the 31st to Juilly, on September 2nd to Serris, on the 3rd to Touquin, on the 4th to Melun, where we were thankful at last to get orders again to advance on the 7th to Touquin, and on the 9th to Coulommiers, reaching Fère-en-Tardennois on the 12th for the Battle of the Aisne.
Of the many recollections of the early days one which will remain longest in my mind is the terrible sadness of the flocks of refugees, of the poor people we left behind. And the glare of villages burning by the hand of the Boche. It was indeed war.
Valuable reconnaissances were made during the whole Retreat from Mons to the Marne in spite of the tremendous difficulties involved by constant movement, transport, and the selection of new landing grounds, but, in the words of Sir John French, "It was the timely warning aircraft gave which chiefly enabled me to make speedy dispositions to avert danger and disaster. There can be no doubt indeed that even then the presence and co-operation of aircraft saved the very frequent use of cavalry patrols and detailed supports." The Royal Flying Corps was an important factor in helping the British Expeditionary Force to escape von Kluck's nearly successful efforts to secure another and a British Sedan.
The reconnaissance resulting in the most valuable information of all, and, I think, during the whole of the war, was that of September 3rd, during the critical operations on the Marne, which formed one of the decisive battles in the world's history, when von Kluck's turning movement to the south-east against the French left was accurately reported and Marshal Joffre was enabled to make his dispositions accordingly. "The precision, exactitude and regularity of the news brought in," he said in a message to the British Commander-in-Chief, "are evidence of the perfect training of pilots and observers." The reports of the German air service, on the other hand, would appear from von Kluck's movements to have been of no assistance to him.
The system adopted from the first was for the pilot or observer, or both, immediately on their return to bring their report to R.F.C. Headquarters, whence the Commander, or his staff officer, accompanied them to G.H.Q., where the map was filled in in accordance with the report. G.H.Q. could then ask questions and obtain any further information which the observer could give, while R.F.C. Headquarters could ascertain what further reports were most urgently required. The form of the reports, which were ready printed, had been most carefully thought out at R.F.C. Headquarters in peace and experimented with at the Concentration Camp.
The maps thus compiled at G.H.Q. from air reconnaissance reports between August 31st and September 3rd were of vital interest, though it was sometimes very difficult to get the information put on the map for prompt consideration. For instance, at Dammartin on the evening of September 1st, when it was thought that German cavalry were within a few miles, G.H.Q. made a very hurried departure, and I was unable to find anyone to whom to give very important reports.
It was at the Battle of the Marne that machines were for the first time allotted to Army Corps for tactical work, while long-distance reconnaissance was carried out by other machines operating from Headquarters. Later on, this system was established as a part of our permanent organization, squadrons being allotted to, and reporting direct to, Corps for tactical reconnaissance, artillery co-operation and contact patrols, and to Armies for longer-distance reconnaissance and fighting.
The last phase of the war of movement was the race for the Channel Ports and it devolved upon aircraft to observe the enemy's movements from his centre and left flank to meet the Allied movement to the coast, to observe the movements of the four newly-formed corps which came into action at Ypres and to maintain liaison with the Belgian and British forces at Antwerp and Ostend. Information was very difficult to obtain and on one occasion I flew from the Aisne to Antwerp, under Sir John French's instructions, in order as far as possible to clear up the general situation when our G.H.Q. was in doubt as to whether Antwerp was completely surrounded or not. It was an interesting piece of work. There was a light drizzle, and the forest of Compiègne had to be flown over at about 200 feet. The B.E. could not make the distance without refilling, and although only a short halt was made at Amiens for the purpose, it was too late to fly direct to Antwerp. Instead, a landing was made in a very sticky field under light plough, which was selected from the air about 4 miles north of Bruges, to which town I rode on a borrowed bicycle. At Bruges there was great consternation and uncertainty as to the position at Antwerp, but the Commander kindly placed a large open car and its very energetic driver at my disposal to try and get through. After many difficulties we managed to find our way into Antwerp by about midnight, and I was received by the Belgian Commander. He explained that though the Germans had broken through the South-Eastern sector and his troops were very hard pressed (and pointing repeatedly to a piece of an 18-inch German shell in the corner of the room, he said, "Mais qu'est-ce qu'on peut faire avec ces choses-là!"), he hoped to be able to hold out for a time. After giving him General French's message and obtaining as much information as possible, I managed to get clear of Antwerp, reaching Bruges again at 3.15 a.m. At 4 a.m. we set out and found a very wet machine in a wetter field and after considerable difficulty and flying through the top of the surrounding hedge, struggled into the upper air on the way back to Headquarters at Fère-en-Tardennois.
During the Battles of the Aisne and of Ypres strategical reconnaissance was carried out by the few machines available at Headquarters. Shephard, the best reconnaissance officer I have ever known, who was killed later, used to fly his B.E.2 without observer over the greater part of Belgium two or three times a week and always brought in a long, closely packed, and extraordinarily valuable report. Tactical reconnaissance to a depth of 15 to 20 miles was done by units attached to Corps.
After the Battle of the Aisne, which was the turning point in the evolution from the war of movement to trench warfare, pure reconnaissance, though still the basis of air work, tended to become a matter of routine, while many new and specialized forms of it-such as air photography and artillery spotting by wireless-were developed.
Photography.
Though experiments had been made in the problem of photography from the air before the war, principally by Fletcher, Hubbard and Laws, and its value to survey was recognized, it had not become of practical utility. We only took one official camera with us to France on August 13th, 1914, and it was not until September 15th that the first attempt at air photography was made, when five plates were exposed over positions behind the enemy's lines with very imperfect results. Its great value as an aid to observation in trench warfare was, however, very apparent, fresh brains were brought to the task, Moore-Brabazon, Campbell and Dr. Swan, and by the end of the year better success was obtained, though positions even then had to be filled in by the observer with red ink. Experiments at home during 1915 led to a great improvement in lenses, and at the beginning of 1916 air photography was universal. At the Battle of the Somme new enemy positions were photographed as soon as they were seen, and the camera did invaluable work in the reconnaissance of the Hindenburg Line during the German retreat of 1917, and the taking of over a thousand photographs was a daily occurrence. On September 4th, 1917, a record of 1,805 photographs was made.
The development of air photography, very remarkable in itself, is even more so when it is remembered that the improvement in enemy anti-aircraft guns drove our machines to carry out their work at altitudes increasing up to 20,000 and even 22,000 feet, at which heights the negatives had to be as distinct as those taken at 4,000 in the earlier days of the war.
At the beginning of the Dardanelles operations our apparatus consisted of one camera, a printing frame and a dark room lamp. The first photographs were taken by Butler in April, 1915, from a H. Farman machine at necessarily low altitudes. Butler was wounded in June and was succeeded by Thomson, who alone made 900 exposures and sent in 3,600 prints.
In addition to the assistance of air photography to reconnaissance, the war gave it great impetus as the handmaid of survey and mapping. It was, in fact, the only means of mapping or correcting the maps of country held by the enemy, which in certain cases, as at Gallipoli and in Palestine, were very inaccurate.
By the end of the war photographic processes and equipment had reached a high standard of excellence. There are still, however, certain difficulties in regard to the production of accurate maps, which have not been overcome, the most obvious being the necessity of an initial framework of fixed points and of contouring. The subject is considered so important that an "Air Survey Committee," consisting of representatives of the Air Ministry, the Geographical section of the War Office, the Ordnance Survey, the School of Military Engineering and the Artillery Survey School, has recently been formed. In addition, the School of Aeronautics of Cambridge University is studying the question. The Survey of India and the Survey of Egypt are also conducting experiments.
Wireless.
From the outset, part of the German scheme of tactics was to batter down resistance by means of superior weight of heavy armament, and with the beginning of warfare of fixed position the observation and direction of our artillery fire became as important as distant reconnaissance. Besides its immense value in increasing the effect of the batteries, it had the indirect advantage of more closely binding the ties of mutual understanding between the air and ground troops, a point which fortunately seems to have been misunderstood by the Germans. In September, 1914, the first attempts were made to signal enemy movements from the aeroplanes of a Headquarters Wireless Flight which had been formed for the purpose, and this practice was continued with success throughout the Battle of the Aisne.
In the earliest stages artillery co-operation was also carried out by dropping coloured lights, but from the Battle of Ypres onwards, though for some time very few wireless machines were available, this was effected by wireless or signal lamps. In his dispatch on the Battle of Loos, Sir John French wrote: "The work of observation for the guns from aeroplanes has now become an important factor in artillery fire, and the personnel of the two arms work in closest co-operation."
By the Battle of the Somme artillery co-operation had assumed very large dimensions. For instance, on September 15th, 1916, on the front of the 4th Army alone, seventy hostile batteries were located, twenty-nine being silenced. Counter-battery work was so effective before the offensive which opened on the Ypres front at the end of July, 1917, that the Germans withdrew their guns and the attack was delayed for three days in order that their new positions might be located.
Recognition marks on aeroplanes were at this time, and indeed throughout the war, a matter of great difficulty. It had been suggested before the war that they would not be necessary, but the reverse was found to be the case, as even with the distinctive marks which were adopted our machines were often fired at by British troops, and we should undoubtedly have lost very heavily if we had flown over our own lines with false marks, as was suggested, or none.
Bombing.
The bombing operations, which reached their climax in the raids on German industrial centres in 1918, arose from very primitive methods used at the beginning of the war. During the retreat from Mons a few hand grenades were carried experimentally in the pockets of pilots and observers, or, in the case of the larger varieties, tied to their bodies, and these were dropped over the side of the machine as opportunity occurred. At the Marne, for instance, small petrol bombs set fire to a transport park and scattered a mixed column of infantry and transport. I think I am right in saying that the first German bombs were dropped on us-unsuccessfully-at Compiègne on August 29th, 1914. It was not, however, until the beginning of 1915 that special bombing raids were started by the Royal Flying Corps, one of the first places to be attacked being the Ghistelles aerodrome in West Flanders.
The most important bombing operations and raids into Germany in the early days of the war were carried out by the Naval Air Service, units of which landed at Ostend on August 27th and operated with the Royal Naval Division from Antwerp. They were subsequently withdrawn to Dunkirk to form the nucleus of an aircraft centre from which excellent work was done in attacking the bases established on or near the Belgian coast from which German submarines and airships conducted their operations.
Just before the Germans entered Antwerp, the first raid was made against a German town, one machine reaching Dusseldorf, when it descended from 6,000 to 400 feet and dropped three bombs on an airship shed.
From the end of 1914 onwards the activities of the Royal Naval Air Service in this theatre of operations continually increased, the chief objectives being the gun emplacements at Middelkerke and Blankenburghe, the submarine bases at Zeebrugge and Bruges, the minefield and dock of Ostend, the airship sheds near Brussels, and the dockyards at Antwerp. The first airship destroyed in the air was attacked over Ghent.
An interesting experiment was the attempt by the R.N.A.S. at the Dardanelles to sink the heavy wire anti-submarine net, which had been stretched on buoys across the Straits at Nagara by the Turks, by means of parachute bombs.
To return to the Royal Flying Corps. During 1915 railway junctions were the principal bombing objectives, and raids were carried out on an ever-increasing scale, formations of fourteen to twenty machines taking part. At the Battle of Neuve Chapelle for instance, the railway junctions at Menin, Courtrai and Douai were attacked. One officer of No. 5 Squadron, carrying one 100 lb. bomb, arrived over Menin at 3,500 feet, descended to 120 feet, and dropped his bomb on the railway line. The first V.C. of the Royal Flying Corps was obtained at the Second Battle of Ypres by Lieutenant W. B. Rhodes-Moorhouse, who in bombing Courtrai came down to three or four hundred feet, under heavy fire, but piloted his machine 35 miles back to Merville at the height of a few hundred feet, and died a few days later from his wounds.
One of the most instructive features of the Battle of Loos in September, 1915, was the definite co-ordination of bombing attacks with army operations. Many types of machines, belonging both to Army and Corps Squadrons, carried bombs in order to destroy dumps, communications, cut off reinforcements, and the like, while at the Somme bombing was carried out by formations of Wings. In October, 1917, 113 tons, and for a period of six days in March, 1918, 95 tons, of explosives were dropped. This illustrates the enormous progress of bombing which was so largely resorted to in the later stages of the war. The hand grenades of 1914 had become bombs weighing three-quarters of a ton: the pilot's pocket a mechanically released rack: and aim, assisted by instruments, was becoming fairly accurate.
Night bombing, necessitated by the fact that by day a large machine heavily laden with bombs was an easy prey to the fighting scout, came into prominence in 1916, increasing in intensity up to the end of the war; and raids into Germany recommenced. Early in 1918 these raids included the bombing of Maintz, Stuttgart, Coblentz, Cologne, and Metz. Machines sometimes dropped their bombs from heights of about 12,000 feet and at other times descended to within 200 feet of their objectives.
Contact Patrol.
Contact patrol, the name given to the direct co-operation of aircraft with troops on the ground, was first extensively practised at the Battle of the Somme, though experiments in this direction had been made in 1915, messages being dropped at the Battle of Neuve Chapelle at pre-arranged points.
The main objects of contact patrols were to assist the telephone (which was frequently cut by shellfire), to keep the various headquarters informed of the progress of their troops during the attack, so also saving them from the possibility of coming under the fire of their own artillery, to report on enemy positions, to transmit messages from the troops engaged to the headquarters of their units, to attack ground formations, and to co-operate with tanks. A system of red flares on the floor of the trenches was used to mark the disposition of the troops, and aircraft communicated their information by means of signalling lamps, wireless and message-bags.
During the German retreat of 1917 contact patrols attacked enemy foundations from 100 feet and in some cases landed behind the enemy lines to obtain information. The skill of low-flying pilots in taking cover by flying behind woods, houses, etc., became increasingly important. The fact that 62,673 rounds of ammunition were fired from the air against enemy ground targets between November 20th and 26th, 1917, and 163,567 between March 13th and 18th, 1918, indicates the rapid development of this form of aircraft action, the effect of which was frequently more deadly than bombing.
Two of many protagonists of contact patrol were Pretyman and Bishop. On one occasion the latter, in attacking an aerodrome at about 50 feet, riddled the officers' and men's quarters with bullets, put two or three machines on the ground out of action, and three in succession as they got into the air. Another interesting example of contact patrol work occurred in 1917 when a pilot flew his machine at a low altitude over the enemy trenches, and he and his observer attracted the attention of the Germans by firing their machine guns and Verey lights. The Germans were so busy with the aeroplane that they had their backs turned to the front line and our infantry were able to cross no-man's land without any artillery preparation, take prisoners and bomb dug-outs.
An article in the Cologne Gazette showed what the Germans thought of low "strafing."
"The operations" (i.e. of June 7th, 1917), it says, "were prefaced by innumerable enemy airmen, who, at the beginning of the preparation for the attack, appeared like a swarm of locusts and swamped the front. They also work on cunningly calculated methods. Their habit is to work in three layers-one quite high, one in the middle, and the third quite low. The English who fly lowest show an immense insolence; they came down to 200 metres and shot at our troops with their machine guns, which are specially adapted to this purpose."
Armour was first employed as a result of Shephard finding at Maubeuge a bullet lodged in the seat of his leather suit. Thin sheets of steel were at once cut out and placed in the wickerwork seats of aeroplanes. This primitive protection developed into the armoured machine mentioned later, which was about to make its appearance at the Armistice.
I may mention here the "special duty" flights, which consisted in establishing secret communication between our Intelligence Branch and agents in the territory occupied by the Germans. Agents, mostly French and Belgian, were carried by aeroplane over the enemy lines and landed there. This work was started in 1914.
Fighting.
At the beginning of the war it became obvious that it was not only the duty of aircraft to obtain information but also to prevent enemy aircraft crossing our lines. In addition to the reconnaissance machine, and in order to make its work possible, a machine designed purely for fighting was required. In August, 1914, the aeroplane's armament consisted simply of rifle, or carbine, and revolver, but our pilots nevertheless attacked hostile machines whenever the opportunity occurred. The first German machine to fly over us was at Maubeuge on August 22nd, 1914, and, though fighting on an extensive scale did not take place until 1916, as early as August 25th, 1914, there were three encounters in the air in which two enemy machines were driven down. One interesting report of an early fight is that between a B.E. and a German machine on December 20th, 1914.
"A German aeroplane with one passenger and pilot being encountered over Poperinghe, we followed to Morbecque and then to Armentières. The passenger of the B.E. fired 40 rounds from his rifle and the German passenger replied with some rounds from his revolver. The B.E. crossed the bows of the German machine to permit the pilot to use his revolver. The German switched off and dived below the B.E., and is believed to have landed somewhere north-west of Lille."
Another instance of the early air combats was when Holt, single-handed, and armed only with a rifle, lashed to a strut of his machine, attacked ten Germans near Dunkirk, causing them to drop their bombs in the field and make off to their own lines.
We managed to bring down a number of German machines, mainly by rifle fire (five had already been brought down by September 7th, 1914), but our great difficulty early in the war was to get the enemy into action, and, although during October and November, 1914, there was a certain amount of fighting, as a rule the German when attacked made for his own lines and the protection of his anti-aircraft guns. This, though offensive carried to the extent of wastefulness of life is equally bad, was a serious mistake in all ways from his point of view, entailing as it did a tendency for the confidence of the troops and the morale of the air service to be undermined from the outset. The error was rectified, but only temporarily, at the Somme.
As the specialized duties of aircraft increased, the Corps machines engaged in them needed protection and it was realized that the best method of protection was the development of the air offensive. This was rendered possible by the adaptation of the machine gun to the aeroplane. Early in 1915 the invention of the "synchronizing gear" enabled a machine gun to fire through the propeller, and by the end of 1915 fighting in the air became the general rule. The first squadron, No. 24, composed purely of fighting machines, took its place on the Western Front in February, 1916, and gradually Wings were attached to Armies solely for fighting and the protection of Corps machines. During the long months of the Battle of the Somme, for instance, when, though the Royal Flying Corps dominated the air, the Germans put up a strenuous opposition, bombing machines were protected by fighting patrols in formation on the far side of the points attacked. The rapidity with which fighting in the air developed is shown by the fact that at the end of 1916 twenty new fighting squadrons were asked for on the Western Front; the establishment was increased to twenty-four machines per squadron, and by the end of the war even night-fighting squadrons were operating with considerable success and, had the war continued, would have proved a very important factor in air warfare.
The development of aerobatics, air fighting, and formation tactics brought many airmen into prominence. For example Albert Ball, who ascribed his successes to keen application to aerial gunnery; J. B. McCudden, the first man to bring four hostile machines down in a day; and Trollope, who later on brought down six. Hawker met his death fighting von Richthofen, who describes the fight in his book The Red Air Fighter as follows:-
"Soon I discovered that I was not fighting a beginner. He had not the slightest intention to break off the fight.... The gallant fellow was full of pluck, and when we had got down to 3,000 feet he merrily waved to me as if to say, 'Well, how do you do?'... The circles which we made round one another were so narrow that their diameter was probably not more than 250 or 300 feet.... At that time his first bullets were flying round me, as up to then neither of us had been able to do any shooting."
At 300 feet Hawker was compelled to fly in a zig-zag course to avoid bullets from the ground and this enabled Richthofen to dive on his tail from a distance of 150 feet.
This indicates a heavy disadvantage under which our aircraft laboured in all their work on the Western Front. The prevailing westerly wind which, while it assisted the enemy in his homeward flight, made it very difficult for a British machine, perhaps damaged by anti-aircraft fire, to make its way-still under fire-to its base.
I cannot leave the subject of air fighting without giving one or two more examples. One which comes to mind is that of five British machines attacking twenty-five of the enemy. One of ours gliding down with its engine stopped and being attacked by two Germans was saved by another British one attacking and driving off the two enemy. The result of the combat was five German machines destroyed and four driven down out of control, whilst all of ours returned safely. Another example, that of Barker who, whilst destroying an enemy two-seater, was wounded from below by another German machine and fell some distance in a spin. Recovering, he found himself surrounded by fifteen Fokkers, two of which he attacked indecisively but shot down a third in flames. Whilst doing this he was again wounded, again fainted, again fell, again recovered control and again, being attacked by a large formation, shot down an enemy in flames. A bullet now shattered his left elbow and, fainting a third time, he fell several thousand feet, where he was again attacked, and thinking his machine had been set on fire he tried, as he thought in a final effort, to ram a Fokker, but instead drove it down on fire! Barker was by this time without the use of both legs and an arm. Diving to a few thousand feet of the ground he again found his retreat barred by eight of the enemy, but these he was able to shake off after short bursts of fire and he returned a few feet above the ground to our lines.
Though at the beginning our machines were rather better than either the French or German, it was the marked superiority of our pilots which gave us the greatest advantage. We should have been superior even had the machines been exchanged.
Co-operation with the Navy.
We have seen that the functions of co-operation with the Navy-Coast defence and Fleet assistance-were very complicated, and that at the outbreak of war the splendid pilots and excellent equipment of the R.N.A.S. were not so highly organized and were wanting in cohesion, but that the R.N.A.S. had advanced further than the Royal Flying Corps in specialized technical development. In the earlier part of the war, in addition to its main duties, the R.N.A.S. ventured in many directions, many of them of considerable value to the Army, as, for instance, at Antwerp.
Coast Defence, Patrol and Convoy Work.
Immediately war broke out a system of coastal patrols was established between the Humber and the Thames Estuary and over the Channel-the latter serving as an escort to the Expeditionary Force crossing to France. Patrols were at first, through limitations of equipment, mainly confined to the Home coast, but, as the war went on and machines improved, they were rapidly extended, especially in connection with the detection and destruction of submarines; reconnaissances were carried out over the enemy's shores, and in 1918 there were forty-three flights of seaplanes, thirty flights of aeroplanes, together with flying boats and airships, operating from, and communicating with, an ever-increasing number of shore stations. Not only was anti-submarine work carried out in the vicinity of the coast, but organized hunts were made for submarines, ships were convoyed on the high seas, shipping routes were protected, and action was taken to bar the passage of submarines through narrow channels. This was effected by an intensive system of combining and interlocking patrols, and by maintaining, in close co-operation with surface craft, a protective barrage across suitable stretches of water, such as the Straits of Dover.
Airships from the beginning, when patrols operated from Kingsnorth during the crossing of the Expeditionary Force to France, proved particularly useful for escort, in addition to patrol work, and twenty-seven small airships, known as the S.S. type, were completed in 1915. In 1916 the Coastal type with a longer range was designed and constructed and new airship bases were established.
Fleet Assistance, Reconnaissance, Spotting for Ships' Guns.
The successful use of Drachen kite-balloons borne in ships at the Dardanelles led to their extensive development. Up to about May, 1915, when the vessels to which they were attached could stand in close to shore and overlook the enemy's positions from a distance of three or four thousand yards, a large amount of spotting of great value was carried out by these balloons for ships at Gallipoli, but when the Turks brought long-range guns into position, kite-balloon vessels were obliged to lie out beyond 11,000 yards and their services were rendered comparatively slight for this purpose. From 1916, however, they were towed by merchant auxiliaries and light cruisers to spot submarines, observers communicating with the patrol ship by means of telephone. One of the most wonderful sights I have ever seen was from the observer's basket of the kite-balloon let up from S.S. "Manica" in June, 1915. We were spotting for the guns of H.M.S. "Lord Nelson" bombarding Chanak. The sky and sea were a marvellous blue and visibility excellent, the peninsula, where steady firing was going on all the time, lay below us, the Straits, with their ships and boats, the Asiatic shore gradually disappearing in a golden haze, the Gulf of Xeros, the Marmora, and behind one the islands of the ?gean affording a perfect background. No one who was at the Dardanelles, however vivid the horrors and the heat and dust and flies, will forget the beauty of the scene, especially at sunset, and it was seen at its best from the basket of a kite-balloon.
The ever-increasing assistance rendered by aircraft to surface vessels in crippling Germany's submarine campaign is shown by the fact that in 1915 ten submarines were attacked from the air and in 1918 126 were sighted and 93 attacked. Nor was the principle forgotten in countering the submarine menace that offence is the best defence, and among the many duties of R.N.A.S. aircraft, based on Dunkirk from the early days of the war, were anti-submarine patrols along the Belgian coast and the bombing of hostile submarine bases, such as Bruges.
As in the case of the Army Corps observation machines, fighting scouts became necessary for the protection of patrols and to counter the enemy's efforts at raids and sea reconnaissance, and the considerable amount of experiment in air fighting which the R.N.A.S. had made before the war bore useful fruit.
For the immediate protection of the Grand Fleet seaplane and aeroplane bases were established at Scapa Flow and Thurso at the beginning of the war, but, owing to damage from a gale in November, 1914, aircraft operations with the Fleet were carried out from the seaplane carrier "Campania." The problem of using carriers with the Fleet had not been seriously tackled before the war, and though experiments were strenuously carried out, and there were fourteen carrier ships in commission in 1918, and a seaplane carrier operated with the Battle Cruiser Squadron at Jutland, the use of aircraft in this way did not become very efficient. One of the chief difficulties was limitation in size, and consequently in radius of action, of aircraft employed from carriers or the decks of battleships. The total number of aeroplanes and seaplanes allotted to the Grand Fleet in 1918 was 350.
Seaplane carriers occasionally co-operated with fighting ships. For instance in October, 1915, a fast carrier at the Dardanelles accompanied ships detailed for the bombardment of Dedeagatch, and her seaplanes not only co-operated in spotting but also made a valuable reconnaissance of the Bulgarian coast and railway. But as a rule fighting and reconnaissance aircraft had mainly to work from shore bases. To assist in this direction, units were sent overseas to be nearer their sphere of action, as, for instance, the R.N.A.S. squadrons stationed at Dunkirk which, besides general reconnaissance, helped the Navy to keep open the Straits of Dover, carried out bombing raids against German bases and dockyards, such as Ostend, Zeebrugge, and Bruges, and co-operated with monitors in the bombardment of the Belgian coast. The development of a long-range seaplane or flying boat was also taken in hand, though an efficient type was not produced until the last year of the war.
As with the Army, an important part of naval aircraft duties was spotting for gunfire; and likewise single-seater fighters were required for the protection of our own aircraft, for preventing enemy aircraft reconnaissance, for attacking the enemy's fleet and protecting our own. The use of offensive patrols steadily increased during the war.
Bombing.
I have already referred to bombing and mentioned the attack on Dusseldorf as an instance of the work done. Bombing raids had always been looked on with favour by the R.N.A.S. and were used throughout the war as a means of countering hostile aircraft operations from bases in Belgium. One of the first successful raids was that against the Friedrichshaven Zeppelin works by three Avro machines, which flew 250 miles over enemy country on November 21st, 1914. Another noteworthy example was the attempted raid against Cuxhaven on Christmas Day, 1914, carried out by seaplanes, which were still in an experimental stage, and three carriers escorted by naval units. Powerful machines for bombing purposes were ordered and bombs of greatly increased size and gear for dropping them were designed.
Torpedo Attack.
The impetus given to bombing helped forward another use of naval aircraft: torpedo attack. This is likely to develop in the future into one of the most important uses of aircraft in naval operations, but during the war it was never given an objective by the German fleet. In May, 1915, two Sunbeam Short machines were embarked in the "Ben-my-Chree" for operations at Gallipoli, and it was in this theatre that for the first time in history ships were sunk by torpedoes released from aircraft. I shall never forget the night when we steamed silently up the narrow Gulf of Xeros and lay waiting to release our seaplanes in the still darkness of the early morning. The machines were lowered noiselessly into the water, and, their engines started, flew across the narrow neck of Bulair under fire from the old Turkish line; then, reaching the northern end of the Dardanelles at dawn, they descended low (one machine actually landed on the water and discharged its torpedo), sank their targets, and returned. In addition to the possibility of submarine attack, the Gulf of Xeros is so narrow that our ship could have been hit by the cross fire of field guns. It was a very fine performance and, although during many years I have spent anxious hours hoping for the distant purr of a safe returning machine, I have never been happier than when after a long wait our seaplanes were again quickly raised on board. The only torpedo machine employed at the Battle of Jutland was a Sunbeam fitted with a 14-inch torpedo, and it was not until just before the Armistice that a squadron of torpedo aircraft was ready for operations with the Grand Fleet.
The Germans also tried to develop the use of torpedo-carrying seaplanes and, as with their submarines, had the advantage over us of a vast number of targets close to hand in our North Sea and Channel shipping, but fortunately the British fighting scouts were able to destroy several of their machines before they had done much damage.
Home Defence.
At the beginning of the war the R.N.A.S. assumed responsibility for the defence of Great Britain against attacks by hostile aircraft, and a scheme for the defence of London and other large towns was entrusted to an anti-aircraft section of the Admiralty Air Department. Its resources, however, consisting of a few unsuitable and widely scattered aeroplanes, some 1 pdr. pom-poms with searchlights manned by a special corps, were inadequate and it was fortunate that only three small daylight aeroplane raids, mainly for reconnaissance, were made during 1914-the first German machine to visit England dropping a bomb near Dover on December 21st.
Night Flying and Night Fighting.
In spite of continuous action by the R.N.A.S. against German airship bases in Belgium, there were in 1915 nineteen airship and eight aeroplane raids-one by night-over England, and, although the new and powerful Zeppelin L.Z.38, which attacked London on May 31st, was destroyed by an aeroplane counter-attack in its shed near Brussels, no real counter measures were evolved until 1916, when Home Defence was taken over by the War Office. During that year a Home Defence Squadron of B.E.2c's, rapidly expanded to a Wing, was formed; and the systematic training of night pilots, the standardization of night-flying equipment and armament, and the lighting of aerodromes, was taken in hand. A continuous aeroplane and searchlight barrage with night landing grounds was gradually formed between Dover and the Forth; the wireless signals employed to assist Zeppelins in finding their way were intercepted, thus enabling our rapidly improving fighting machines to pick up and attack raiding airships; and the constant attacks to which airship sheds were exposed in Belgium, caused their withdrawal to positions further inland and increased their distance from England. During 1916 there were twenty-two raids by airships, six of which were destroyed, the first being brought down in September at Cuffley by Leefe Robinson. Thenceforward airship raids declined, the destruction of the majority of the largest and latest which raided England on October 19th, 1917, sealing their fate.
On the other hand, aeroplane daylight and night raids on London, the first of which occurred in November, 1916, increased in number and strength with the object, in addition to the destruction of material and civilian morale, of forcing upon us the unsound retention at home of a considerable air defence force. The largest of these attacks was made by seventeen aeroplanes at midday on June 13th, 1917, but, the Zeppelin danger nullified, counter measures to meet the new menace were gradually evolved. New squadrons were raised and the number of home defence squadrons was raised to fourteen service and eight night training squadrons; a Northern Home Defence Wing was formed at York; and the Home Defence Group became the 6th Brigade. The first night aeroplane raid occurred in September, and the systematic training of night-fighting pilots on scout machines was hurried on. Separate zones for aeroplanes, guns and searchlights-the latter provided with sound locators-forming an outer barrage, were instituted, and aprons, supported by kite-balloons, formed a protective barrage up to 8,000 feet. A system of wireless and ground telephonic communication was improvised for plotting the course of attacking aircraft and thus enabling squadron commanders to concentrate machines at the point of attack. By 1918 the night-fighting aeroplane, assisted by these means, had countered the night-bombing aeroplane. At first, this had been the result of the retention of a large number of fighting aircraft and a complete organization at home.
Meanwhile, night fighting, especially the protection of night bombers by fighting machines, had become of paramount importance on the Western Front. The chief feature of activity in September, 1918, was the successful co-operation between searchlights in the forward areas and No. 151 night-fighting squadron. This was the first night-fighting squadron, trained by the 6th Brigade, to be sent to France. It was proposed to send four more such squadrons and thus form a first line of offensive defence which would react on hostile raids over England. Thus once again the old doctrine was gradually observed that offence is the only true defence, and that purely defensive measures, however efficient, by keeping men and material from the vital point, are necessarily expensive out of all proportion to their effectiveness. Both the Germans and ourselves made the initial mistake of organizing large local defence systems partly to placate public opinion. During the German offensive of 1918 a further development of night fighting took place in the bombing and low strafing of enemy troops and unlighted transport with the aid of flares.
The Machine and Engine.
Turning now to the machine and engine, the Military Trials held in 1912, when the Royal Flying Corps was started, represented the first organized effort to assist the evolution of service aeroplanes in this country and a brief comparison will be useful to show the performance of the average machines and engines of that date, at the beginning, and at the end of the war, and of civil machines of to-day.
At the Military Competitions of 1912, of the eight types-Avro, B.E., Bristol, Cody, Bleriot, Deperdussin, Hanriot, and M. Farman-the first four were British, though only the Avro had a British engine, and the last four French, fitted with French engines. The average horse-power was about 83, the average maximum speed 67, and the minimum 50 miles per hour; the climb to 1,000 feet was effected in 4? minutes with an average load of 640 lb., which included pilot, fuel for four hours and useful load. The loading per square foot was, for biplanes, about 4?, and, for monoplanes, 6 lb.
On the outbreak of war, and until the end of 1914, of the ten types in use-Avro, B.E., Bristol, Sopwith, Vickers, M. Farman, H. Farman, Caudron, Morane, and Voisin-five were British and five were French and all were fitted with French engines. The average horse-power was still about 83, but the average maximum speed had risen to 74, and the minimum had fallen to 41 miles per hour. The load averaged 609 lb.
A remarkable advance in machine and engine construction is shown by referring to the tables for 1918. At the Armistice of the twelve types-Avro, Bristol Fighter, Sopwith Snipe, S.E. 5a, de Havilland 4 and 9a, Vickers Vimy, Handley Page O/400 and V/1,500, Fairey Seaplane 3c, F. 2 A. and F. 5-all were British and, except the de Havilland 9a, which had an American engine, were fitted with engines of British manufacture. The F. 2 A., and F. 5, were twin-engined, while one, the Handley Page V/1,500, was equipped with four engines. The average horse-power was per engine, 344, and per machine, 516; the average maximum speed 111, and the minimum 53? miles per hour, the climb to 6,500 feet was carried out in 13 minutes and to 10,000 feet in 24 minutes with an average load, including fuel for 5? hours, of 2,742 lb. The average ceiling was 15,500 feet; the loading per square foot about 8 lb.
The years following the Armistice have witnessed the conversion of military machines and the development of new designs for commercial purposes. In 1921 there were thirteen types fitted with British engines: Avro, Bristol, de Havilland 4, 16 and 18, Vickers Vimy, Handley Page O/400 and W. 8, B.A.T., Westland, Fairey, Supermarine and Vickers Amphibians. No British machine had a foreign engine. The Vickers Vimy, Handley Page O/400 and W. 8, which had a passenger-carrying capacity of 15, were twin-engined. The average horse-power was per engine, 387, and per machine, 474; the average maximum speed 114, and the minimum 49, miles per hour. With an average load of 2,467 lb., including fuel for 4? hours, 19 minutes was required for a climb to 10,000 feet. The average loading per square foot was about 13 lb., and the average ceiling 15,793 feet.
Before the war, in addition to the Royal Aircraft Factory, there were only eight firms engaged, on a very small scale, in the manufacture of aircraft in England, and an aero engine industry hardly existed. Until 1916, the greater proportion of our machines, and almost all our engines, were French, and we were very dependent upon France for the replacement of our heavy losses in material. By the end of the war the bulk of our material was of British design and construction, though there was still a certain number of British built engines of French design. One American engine-the Liberty-was also employed. The fact that in October, 1918, the Royal Air Force had 22,171 machines and 37,702 engines on charge, and that during the ten months January to October the output of machines had been 26,685 and of engines 29,561, gives some idea of the enormous growth in production.
In the first few months of the war it was not possible to progress far with new inventions or improvements. Fortunately, our Aircraft Factory had evolved in the B.E. a machine of considerable stability which in this respect compared favourably with German machines, and was well adapted to its work of reconnaissance.
Technical progress during the war often unfortunately involved the loss of valuable lives, as for instance those of Professor Hopkinson and Busk, to both of whom heavy debts of gratitude are owed, but gradually obstacle after obstacle, problem after problem, was successfully tackled by our designers and constructors. With a view to enlarging the field of observation, staggered planes were introduced in the B.E.2c. This machine also proved that it was possible to calculate the degree of stability and thus paved the way for the design of aeroplanes with indifference to stability and increased man?uvrability for fighting purposes, or with great inherent stability for bombing. During 1915 the B.E.2c was used for all purposes, but the extra loading involved by the increasing use of aeroplanes for bombing and fighting caused a decrease in the rate of speed and climb, and our aeroplanes were temporarily inferior in fighting power to the Fokker.
The necessity of preventing the enemy obtaining information soon led to the development of air fighting. At the beginning of the war the sole armament of aeroplanes was the rifle or revolver. The machine gun soon followed, but its use in tractor machines was impracticable on account of the danger of hitting the airscrew. The first "fighters" were therefore two-seater pushers, such as the "Short-horn" Maurice Farmans which, though not designed for fighting, and too slow to chase enemy aircraft, were the first to be fitted with Lewis guns, and F.E.'s, the first machine designed specifically for fighting, with the machine-gun operator in front of the pilot. These "pusher" fighters had an excellent field of view and fire forwards, but suffered from lack of speed and a large "blind" area to the rear. On the other hand, the single-seater tractors were potentially the superior fighters, and in order to protect the blades of the airscrew the French were the first to use deflector blades on them in tractor machines.
Our early single-seater tractors were fitted with a Lewis gun fixed so as to fire over or at the side of the airscrew and actuated by a bowden wire, the most efficient, though not the most numerous, fighting machines at the end of 1915 being the Bristol Scouts.
By the Summer of 1916, however, we had adapted the "synchronizing gear" to our machine guns, enabling them to be fired through the propeller; while aircraft engines developed much greater power and full allowance was made for all equipment carried. From that time the development of our single-seater fighters was steadily progressive. One of the first of these was the Sopwith "Pup," which had a speed of 106? miles an hour at 6,500 feet, climbed 10,000 feet in just over 14 minutes, and could attain a ceiling of 17,500 feet. In 1917 appeared the Sopwith "Camel," a typical example of this type, which was simple, stable, easily controllable and possessed two guns. It had a speed of 121 miles an hour at 10,000 feet, to which height it could climb in under 10? minutes, and a ceiling of 23,000 feet. The Martinsyde F.4, embodying further improvements, was not ready in time for active service.
While the single-seater tractor was developing for purely offensive action, the two-seater fighter, of which the field of view, man?uvrability and general performance were being improved, retained its utility as a reconnaissance machine. In 1916 the "pusher" type was superseded by the Sopwith "1? Strutter" armed with a synchronized Vickers gun, which for its 130 horse-power was never surpassed. The pilot was close to the engine and had a good view of the ground, while the gunner was placed behind him with a rotary Lewis gun turret. Early in 1917 these qualities were further developed in the Bristol Fighter.
With the advent of these improved types the B.E.2c was relegated to the work of artillery co-operation, until superseded by the B.E.2e. Towards the end of 1916 appeared the R.E.8 with a Vickers synchronized gun and a Lewis gun, which after many vicissitudes became the standard machine for artillery work.
Systematic bombing was practised by nearly all types of machines, but real accuracy was never obtained. Thus, the B.E.2c was first used in formations, but with a full load of bombs it could not carry an observer, and its moderate speed left it an easy prey to hostile fighters. Early in 1916 appeared the Martinsyde single-seater bomber with an endurance of 4? hours, and in 1917 the D.H.4 which was much used for day-bombing. The F.E.2b pusher, discarded as a fighting machine, became the principal night-bomber.
It was comparatively late in the war before special bombing machines were evolved. They were then divided into day-bombers and night-bombers, the D.H.9 and 9a machines being typical of the former and the Handley Page of 1917-a large twin-engine aeroplane, the first really effective night-bomber, of considerable carrying power but low performance-of the latter. By November 8th, 1918, two super-Handley Pages were ready to start to Berlin. They possessed a maximum range of 1,100 miles, a crew of seven, four 350 horse-power Rolls-Royce engines, arranged in pairs, a tractor and a pusher in tandem on either side of the machine, and, as they would be compelled to fly both by night and day, a gun defence system. The D.H.10a and the Vickers Vimy, for day and night bombing respectively, were also being produced at the date of the Armistice.
In the early days of the war an aeroplane had little to fear above 4,000 feet. With the improvement of the anti-aircraft gun there was, by the end of the war, no immunity at 20,000 feet. Very low flying for attack was, however, being rapidly developed, and would have proved of great effect in 1919. The aeroplane used for this purpose was the single-seater fighter, and the Sopwith "Salamander," with two guns, a speed of 125 miles an hour, and 650 lb. of armoured plates, was about to make its appearance at the Armistice.
I have previously mentioned how dependent the improvement of design and performance of aircraft has been upon the less simple and tardier development of the engine. The invention of the light motor made aviation possible, and development has synchronized with the evolution of lighter, more powerful and more reliable engines. One of the most difficult problems still confronting us is the production of a cheap, high-powered and reliable engine, but the existence at the end of the war of machines weighing 15 tons indicates the progress achieved, while British engines of 600 horse-power are now in use, and one of 1,000 horse-power will shortly be available.
Tactics and the Strategic Air Offensive.
During the war there were three concurrent movements in process: the ratios of the various forms of air tactics were constantly changing, and the components of our air forces varied in accordance with the development of reconnaissance, artillery co-operation, bombing and fighting. Secondly, their total strength was increasing rapidly; and, thirdly, it was increasing relatively faster than the Army or Navy.
It was an evident and logical development and in accord with the shortage of national man power and the consequent tendency to a reduction in the strength of the Army, that, the necessary uses of aircraft with the Army and Navy being ensured, any available margin of air power should be employed on an independent basis for definite strategic purposes. The difficulty was to arrive at an agreement as to the minimum tactical and grand tactical requirements of the Army and Navy. The British Army was not alone in asserting that there was no minimum and that it wanted every available airman, and agreed with the French that anything which it could temporarily spare should be lent to the French Army. It was argued that the Armies could as easily and better arrange for strategic bombing. Fortunately in 1918, when I was Chief of the Air Staff, we managed to secure a margin and formed the Independent Air Force in June of that year. It was, of course, understood that, in the event of either the British or French Armies being hard put to it, the Independent Air Force could temporarily come to their direct assistance and act in close co-operation with them.
In 1915 in accordance with the old doctrine that offence is the best defence, the surest method of protecting specialized machines on the battle front was found to be in the attack of enemy aircraft by fighting machines. In 1918 it was decided that raids on the centres of German war industry would not only cripple the enemy's output of material essential to victory, but also relieve the pressure on the Western Front, the vital point of the war. The Germans had had the same intention in the many raids which started over Dover on December 21st, 1914.
Long-range bombing had, however, been carried out spasmodically before 1918. In addition to its taste for bombing in general, the Royal Naval Air Service were keenly bent from the outset on long-range bombing in particular. The question of forming an Allied squadron to bomb German munition factories was first raised in 1915 at one of the monthly meetings between the French and British Aviation departments; and in February, 1916, a small squadron of Sopwith "1? Strutters" was formed at Detling for the purpose of bombing Essen and Dusseldorf from England, but the Army in France, being short of machines, asked that they should be sent to the front, and therefore the scheme did not mature; neither, for similar reasons, did one for the co-operation in 1916 of British and French bombing squadrons, operating from Luxeuil.
It was not until October, 1917, that the first striking force, consisting of three squadrons, was formed under the Army with Ochey as its base. It was mainly used in raids against the ironworks in the Alsace-Lorraine Basin and the chemical industry in the neighbourhood of Mannheim. As I have said, a definite offensive policy by means of an independent strategic force was later decided upon, and the "Independent" Air Force was brought into existence. It originally comprised two day-bomber and two night-bomber squadrons. During the summer additional squadrons were allotted to it, including D.H.9's and Handley Pages. Day-bombing squadrons had to fight their way to objectives in close formation, and the problems connected with navigation, calculation of petrol supply, action of wind and ceiling, were all accentuated. Casualties were heavy, with the result that a squadron of Fighters, composed of Sopwith "Camels," was incorporated for the purpose of protection. Thus we see the beginnings of an air fleet analogous to the naval fleet with its capital ships and protective craft.
The main objectives were the centre of the chemical industry at Mannheim and Frankfort; the iron and steel works at Briey and Longwy and the Saar Basin; the machine shops in the Westphalian district and the magneto works at Stuttgart; the submarine bases at Wilhelmshaven, Bremerhaven, Cuxhaven, and Hamburg, and the accumulator factories at Hagen and Berlin.
It will be seen from a map that three of the main industrial centres were situated near the west frontier of Germany; and, therefore, one portion of the striking force was based at Ochey, which lies within a few miles of the Saar Basin, within 180 miles of Essen, and within 150 miles of Frankfurt. Another portion was based on Norfolk, where a group of super-Handley Page machines were established for the specific purpose of attacking Berlin, a distance of 540 miles, and the naval bases within 400 miles. It was obvious that though aircraft from England would have to cover greater distances, they would not expose themselves to the strong hostile defences in rear of the battle front.
Three instances of the Independent Air Force's action may be cited. On the night of August 21st/22nd, two Handley Page machines dropped over one ton of bombs on Cologne Station, the raid occupying seven hours. On the night of August 25th/26th two Handley Pages attacked the Badische Aniline und Soda Fabrik of Mannheim; bombs were dropped from a height of 200 feet, direct hits being obtained in every case; and the machines then remained over the town, which they swept with machine-gun fire. On August 12th the first attack was made on Frankfurt by twelve D.H.4 day-bombers, every machine reaching the objective and returning safely in spite of being attacked, over Mannheim and throughout the return journey, by some forty hostile fighters.
During the five months of its existence the Independent Air Force dropped 550 tons of bombs, 160 by day and 390 by night. Of these 200 tons were dropped on aerodromes, largely by the short-distance F.E.2b's, as a result of which, hostile attacks on Allied aerodromes became practically negligible. Theoretically, machines of the Independent Air Force should not have been utilized for attacking purely military objectives in the Army zone, such as aerodromes, and their co-operation with the Army for this purpose shows that their true r?le was either not appreciated or not favoured by the French and other Commands.
There is ample testimony to the spirit of demoralization which pervaded the civil population of the towns attacked.
"My eyes won't keep open whilst I am writing," reads one captured letter. "In the night twice into the cellar and then again this morning. One feels as if one were no longer a human being. One air raid after another. In my opinion this is no longer war but murder. Finally, in time, one becomes horribly cold, and one is daily, nay, hourly, prepared for the worst." "Yesterday afternoon," says another, "it rained so much and was so cloudy that no one thought it was possible for them to come. It is horrible; one has no rest day or night."
Although, for reasons into which it is not necessary to enter here, only a comparatively small percentage of the efforts of the Independent Force were directed against the industrial targets for which the force had been created, yet by the end of the war the strategic conception of air power was bearing fruit, and the Air Ministry had in hand measures for bombing which would have gone far to shatter German munitionment. The defence measures forced upon the Germans within their own country were reacting on their offensive action at the front, which was at the same time denuded of fighting aircraft at various points to meet the menace of our strategic force at Ochey.
Organization.
As in peace on a small, so in war on a large scale, the history of the organization of aircraft, while we were fighting for our national existence and competing with similar enemy expansion, is one of continuous development, of decentralization of command and co-ordination of duties. Headquarters, the Squadron and the Aircraft Park, as originally conceived in peace, though subject to variations in size, remained the basis of our organization. For instance, the original eighteen machines of our squadron were increased to twenty-four for single-seater fighters and reduced to six in the case of the super-Handley Page bombers. The four squadrons originally operated directly under Headquarters, were soon allocated to Corps for tactical reconnaissance and artillery co-operation, while a unit remained at Headquarters for strategical and long-distance reconnaissance and a few special duties. The next step was in November, 1914, when two Wings, composed originally of two, and later, of five squadrons each, were formed, R.F.C. Headquarters retaining one squadron and the wireless flight for G.H.Q. requirements. The Wing Headquarters co-ordinated the work of the squadrons which were allocated to Army Corps.
A further development, in 1916, was the formation for each of the three Armies of a Brigade, consisting of two Wings and an Aircraft Park. One-the Corps Wing-carried out artillery co-operation and close reconnaissance (including photography) with Army Corps, the other-the Army Wing-carried out more distant reconnaissance and fighting patrols under Army Headquarters. Our air superiority at the Battle of the Somme in 1916 led us to expect German counter-measures in 1917, and our programme for the following winter contemplated a proportion of two fighting squadrons to each Corps Squadron. By 1917 there were five British Armies in France and Belgium and our air forces were increased to provide a Brigade for each of the two new Armies. The Headquarters of the flying force in the field (except in the case of the Independent Air Force, which was responsible to the Supreme War Council and the Air Ministry in London) remained attached to G.H.Q. throughout the war.
The main difficulty in the higher organization was the lack of co-operation between the Royal Flying Corps and the Royal Naval Air Service and their competition for the supply of men and machines-the demands of both being urgent and insatiable. As a first step to overcome this, an Air Board was formed in May, 1916, to discuss general air policy, especially the combined operation of the Naval and Military Air Services, to make recommendations on the types of machines required by each, and to co-ordinate the supply of material. The Air Board was an improvement, but not a remedy, and, therefore, in 1917 it was decided to form an Air Ministry responsible for war aviation in all its branches and to amalgamate the Naval and Military Air Services as the Royal Air Force. This was carried into effect early in 1918, with Lord Rothermere as Secretary of State for Air with a seat in the Cabinet, and the air became the third service of the Crown, with an independent Government department permeated with a knowledge of air navigation, machinery, and weather, and closely allied to the industrial world for the initiation, guidance, and active supervision of research and experimental work.
I will mention later some of the many arguments for and against the retention of an independent Air Ministry and autonomous Air Force in peace. The amalgamation was certainly advantageous in war. It effected the correlation of a number of hitherto independent services according to a uniform policy and prevented overlapping by centralizing administration. Under single control it was possible to carry out, on a carefully co-ordinated plan, recruiting and training, to supply men and material, to organize air power according to the strategic situation in each of the various theatres of war, and to form the correct ratio between the air forces in the field and the reserves in training at home. The difficulty was that the amalgamation had to be carried out during the most intensive period of air effort, but by the end of the war most of these objects had been attained without jeopardizing the close co-operation with the Army and Navy. Co-operation with the Naval and General Staffs and with naval and military formations was, in fact, improved, independent action was beginning to bear fruit, and we possessed an Air Force without rival.
* * *