/0/12123/coverbig.jpg?v=9c1146f3c262c84e77a22f9af9df8256)
5

/ 1

If all American housekeepers could be taught how to select and manage the most economical and convenient apparatus for cooking and for warming a house, many millions now wasted by ignorance and neglect would be saved. Every woman should be taught the scientific principles in regard to heat, and then their application to practical purposes, for her own benefit, and also to enable her to train her children and servants in this important duty of home life on which health and comfort so much depend.
The laws that regulate the generation, diffusion, and preservation of heat as yet are a sealed mystery to thousands of young women who imagine they are completing a suitable education in courses of instruction from which most that is practical in future domestic life is wholly excluded. We therefore give a brief outline of some of the leading scientific principles which every housekeeper should understand and employ, in order to perform successfully one of her most important duties.
Concerning the essential nature of heat, and its intimate relations with the other great natural forces, light, electricity, etc., we shall not attempt to treat, but shall, for practical purposes, assume it to be a separate and independent force. Heat or caloric, then, has certain powers or principles. Let us consider them:
First, we find Conduction, by which heat passes from one particle to another next to it; as when one end of a poker is warmed by placing the other end in the fire. The bodies which allow this power free course are called conductors, and those which do not are named non-conductors, Metals are good conductors; feathers, wool, and furs are poor conductors; and water, air, and gases are non-conductors.
Another principle of heat is Convection, by which water, air, and gases are warmed. This is, literally, the process of conveying heat from one portion of a fluid body to another by currents resulting from changes of temperature. It is secured by bringing one portion of a liquid or gas into contact with a heated surface, whereby it becomes lighter and expanded in volume. In consequence, the cooler and heavier particles above pressing downward, the lighter ones rise upward, when the former, being heated, rise in their turn, and give place to others again descending from above. Thus a constant motion of currents and interchange of particles is produced until, as in a vessel of water, the whole body comes to an equal temperature. Air is heated in the same way. In case of a hot stove, the air that touches it is heated, becomes lighter, and rises, giving place to cooler and heavier particles, which, when heated, also ascend. It is owing to this process that the air of a room is warmest at the top and coolest at the bottom. It is owing to this principle, also, that water and air can not be heated by fire from above. For the particles of these bodies, being non-conductors, do not impart heat to each other; and when the warmest are at the top, they can not take the place of cooler and heavier ones below.
Another principle of heat (which it shares with light) is Radiation, by which all things send out heat to surrounding cooler bodies. Some bodies will absorb radiated heat, others will reflect it, and others allow it to pass through them without either absorbing or reflecting Thus, black and rough substances absorb heat, (or light,) colored and smooth articles reflect it, while air allows it to pass through without either absorbing or reflecting. It is owing to this, that rough and black vessels boil water sooner than smooth and light-colored ones.
Another principle is Reflection, by which heat radiated to a surface is turned back from it when not absorbed or allowed to pass through; just as a ball rebounds from a wall; just as sound is thrown back from a hill, making echo; just as rays of light are reflected from a mirror. And, as with light, the rays of heat are always reflected from a surface in an angle exactly corresponding to the direction in which it strikes that surface. Thus, if heated are comes to an object perpendicularly-that is, at right angles, it will be reflected back in the same line. If it strikes obliquely, it is reflected obliquely, at an angle with the surface precisely the same as the angle with which it first struck. And, of course, if it moves toward the surface and comes upon it in a line having so small an angle with it as to be almost parallel with it, the heated air is spread wide and diffused through a larger space than when the angles are greater and the width of reflection less.
[Illustration: Fig. 31.]
[Illustration: Fig. 32.]
[Illustration: Fig. 33.]
The simplest mode of warming a house and cooking food is by radiated heat from fires; but this is the most wasteful method, as respects time, labor, and expense. The most convenient, economical, and labor-saving mode of employing heat is by convection, as applied in stoves and furnaces. But for want of proper care and scientific knowledge this method has proved very destructive to health. When warming and cooking were done by open fires, houses were well supplied with pure air, as is rarely the case in rooms heated by stoves. For such is the prevailing ignorance on this subject that, as long as stoves save labor and warm the air, the great majority of people, especially among the poor, will use them in ways that involve debilitated constitutions and frequent disease.
The most common modes of cooking, where open fires are relinquished, are by the range and the cooking-stove. The range is inferior to the stove in these respects: it is less economical, demanding much more fuel; it endangers the dress of the cook while standing near for various operations; it requires more stooping than the stove while cooking; it will not keep a fire all night, as do the best stoves; it will not burn wood and coal equally well; and lastly, if it warms the kitchen sufficiently in winter, it is too warm for summer. Some prefer it because the fumes of cooking can be carried off; but stoves properly arranged accomplish this equally well.
After extensive inquiry and many personal experiments, the author has found a cooking-stove constructed on true scientific principles, which unites convenience, comfort, and economy in a remarkable manner. Of this stove, drawings and descriptions will now be given, as the best mode of illustrating the practical applications of these principles to the art of cooking, and to show how much American women have suffered and how much they have been imposed upon for want of proper knowledge in this branch of their profession. And every woman can understand what follows with much less effort than young girls at high-schools give to the first problems of Geometry-for which they will never have any practical use, while attention to this problem of home affairs will cultivate the intellect quite as much as the abstract reasonings of Algebra and Geometry.,
[Illustration: Fig. 34.]
Fig. 34 represents a portion of the interior of this cooking-stove. First, notice the fire-box, which has corrugated (literally, wrinkled) sides, by which space is economized, so that as much heating surface is secured as if they were one third larger; as the heat radiates from every part of the undulating surface, which is one third greater in superficial extent than if it were plane. The shape of the fire-box also secures more heat by having oblique sides-which radiate more effectively into the oven beneath than if they were perpendicular, as illustrated below-while also it is sunk into the oven, so as to radiate from three instead of from two sides, as in most other stoves, the front of whose fire-boxes with their grates are built so as to be the front of the stove itself.
[Illustration: Fig 35. Model Stove]
[Illustration: Fig 36. Ordinary Stove]
The oven is the space under and around the back and front sides of the fire-box. The oven-bottom is not introduced in the diagram, but it is a horizontal plate between the fire-box and what is represented as the "flue-plate," which separates the oven from the bottom of the stove. The top of the oven is the horizontal corrugated plate passing from the rear edge of the fire-box to the back flues. These are three in number-the back centre-flue, which is closed to the heat and smoke coming over the oven from the fire-box by a damper-and the two back corner-flues. Down these two corner-flues passes the current of hot air and smoke, having first drawn across the corrugated oven-top. The arrows show its descent through these flues, from which it obliquely strikes and passes over the flue-plate, then under it, and then out through the centre back-flue, which is open at the bottom, up into the smoke-pipe.
The flue-plate is placed obliquely, to accumulate heat by forcing and compression; for the back space where the smoke enters from the corner-flues is largest, and decreases toward the front, so that the hot current is compressed in a narrow space, between the oven-bottom and the flue-plate at the place where the bent arrows are seen. Here again it enters a wider space, under the flue-plate, and proceeds to another narrow one, between the flue-plate and the bottom of the stove, and thus is compressed and retained longer than if not impeded by these various contrivances. The heat and smoke also strike the plate obliquely, and thus, by reflection from its surface, impart more heat than if the passage was a horizontal one.
The external radiation is regulated by the use of nonconducting plaster applied to the flue-plate and to the sides of the corner-flues, so that the heat is prevented from radiating in any direction except toward the oven. The doors, sides, and bottom of the stove are lined with tin casings, which hold a stratum of air, also a non-conductor. These are so arranged as to be removed whenever the weather becomes cold, so that the heat may then radiate into the kitchen. The outer edges of the oven are also similarly protected from loss of heat by tin casings and air-spaces, and the oven-doors opening at the front of the store are provided with the same economical savers of heat. High tin covers placed on the top prevent the heat from radiating above the stove. These are exceedingly useful, as the space under them is well heated and arranged for baking, for heating irons, and many other incidental necessities. Cake and pies can be baked on the top, while the oven is used for bread or for meats. When all the casings and covers are on, almost all the heat is confined within the stove, and whenever heat for the room is wanted, opening the front oven-doors turns it out into the kitchen.
Another contrivance is that of ventilating-holes in the front doors, through which fresh air is brought into the oven. This secures several purposes: it carries off the fumes of cooking meats, and prevents the mixing of flavors when different articles are cooked in the oven; it drives the heat that accumulates between the fire-box and front doors down around the oven, and equalizes its heat, so that articles need not be moved while baking; and lastly, as the air passes through the holes of the fire-box, it causes the burning of gases in the smoke, and thus increases heat. When wood or bituminous coal is used, perforated metal linings are put in the fire-box, and the result is the burning of smoke and gases that otherwise would pass into the chimney. This is a great discovery in the economy of fuel, which can be applied in many ways.
Heretofore, most cooking-stoves have had dumping-grates, which are inconvenient from the dust produced, are uneconomical in the use of fuel, and disadvantageous from too many or too loose joints. But recently this stove has been provided with a dumping-grate which also will sift ashes, and can be cleaned without dust and the other objectionable features of dumping-grates. A further account of this stove, and the mode of purchasing and using it, will be given at the close of the book.
Those who are taught to manage the stove properly keep the fire going all night, and equally well with wood or coal, thus saving the expense of kindling and the trouble of starting a new fire. When the fuel is of good quality, all that is needed in the morning is to draw the back-damper, snake the grate, and add more fuel.
Another remarkable feature of this store is the extension-top, on which is placed a water reservoir, constantly heated by the smoke as it passes from the stove, through one or two uniting passages, to the smoke-pipe. Under this is placed a closet for warming and keeping hot the dishes, vegetables, meats, etc., while preparing for dinner. It is also very useful in drying fruit; and when large baking is required, a small appended pot for charcoal turns it into a fine large oven, that bakes as nicely as a brick oven.
Another useful appendage is a common tin oven, in which roasting can be done in front of the stove, the oven-doors being removed for the purpose. The roast will be done as perfectly as by an open fire.
This stove is furnished with pipes for heating water, like the water-back of ranges, and these can be taken or left out at pleasure. So also the top covers, the baking-stool and pot, and the summer-back, bottom, and side-casings can be used or omitted as preferred.
[Illustration Fig 37]
Fig. 37 exhibits the stove completed, with all its appendages, as they might be employed in cooking for a large number.
Its capacity, convenience, and economy as a stove may be estimated by the following fact: With proper management of dampers, one ordinary-sized coal-hod of anthracite coal will, for twenty-four hours, keep the stove running, keep seventeen gallons of water hot at all hours, bake pies and puddings in the warm closet, heat flat-irons under the back cover, boil tea-kettle and one pot under the front cover, bake bread in the oven, and cook a turkey in the tin roaster in front. The author has numerous friends, who, after trying the best ranges, have dismissed them for this stove, and in two or three years cleared the whole expense by the saving of fuel.
The remarkable durability of this stove is another economic feature. For in addition to its fine castings and nice-fitting workmanship, all the parts liable to burn out are so protected by linings, and other contrivances easily renewed, that the stove itself may pass from one generation to another, as do ordinary chimneys. The writer has visited in families where this stove had been in constant use for eighteen and twenty years, and was still as good as new. In most other families the stoves are broken, burnt-out, or thrown aside for improved patterns every four, five, or six years, and sometimes, to the knowledge of the writer, still oftener.
Another excellent point is that, although it is so complicated in its various contrivances as to demand intelligent management in order to secure all its advantages, it also can be used satisfactorily even when the mistress and maid are equally careless and ignorant of its distinctive merits. To such it offers all the advantages of ordinary good stoves, and is extensively used by those who take no pains to understand and apply its peculiar advantages.
But the writer has managed the stove herself in all the details of cooking, and is confident that any housekeeper of common sense, who is instructed properly, and who also aims to have her kitchen affairs managed with strict economy, can easily train any servant who is willing to learn, so as to gain the full advantages offered. And even without any instructions at all, except the printed directions sent with the stove, an intelligent woman can, by due attention, though not without, both manage it, and teach her children and servants to do likewise. And whenever this stove has failed to give the highest satisfaction, it has been, either because the housekeeper was not apprized of its peculiarities, or because she did not give sufficient attention to the matter, or was not able or willing to superintend and direct its management.
The consequence has been that, in families where this stove has been understood and managed aright, it has saved nearly one half of the fuel that would be used in ordinary stoves, constructed with the usual disregard of scientific and economic laws. And it is because we know this particular stove to be convenient, reliable, and economically efficient beyond ordinary experience, in the important housekeeping element of kitchen labor, that we devote to it so much space and pains to describe its advantageous points.
CHIMNEYS.
One of the most serious evils in domestic life is often found in chimneys that will not properly draw the smoke of a fire or stove. Although chimneys have been building for a thousand years, the artisans of the present day seem strangely ignorant of the true method of constructing them so as always to carry smoke upward instead of downward. It is rarely the case that a large house is built in which there is not some flue or chimney which "will not draw." One of the reasons why the stove described as excelling all others is sometimes cast aside for a poorer one is, that it requires a properly constructed chimney, and multitudes of women do not know how to secure it. The writer in early life shed many a bitter tear, drawn forth by smoke from an ill-constructed kitchen-chimney, and thousands all over the land can report the same experience.
The following are some of the causes and the remedies for this evil.
The most common cause of poor chimney draughts is too large an opening for the fireplace, either too wide or too high in front, or having too large a throat for the smoke. In a lower story, the fireplace should not be larger than thirty inches wide, twenty-five inches high, and fifteen deep. In the story above, it should be eighteen inches square and fifteen inches deep.
Another cause is too short a flue, and the remedy is to lengthen it. As a general rule, the longer the flue the stronger the draught. But in calculating the length of a flue, reference must be had to side-flues, if any open into it. Where this is the case, the length of the main flue is to be considered as extending only from the bottom to the point where the upper flue joins it, and where the lower will receive air from the upper flue. If a smoky flue can not be increased in length, either by closing an upper flue or lengthening the chimney, the fireplace must be contracted so that all the air near the fire will be heated and thus pressed upward.
If a flue has more than one opening, in some cases it is impossible to secure a good draught. Sometimes it will work well and sometimes it will not. The only safe rule is to have a separate flue to each fire.
Another cause of poor draughts is too tight a room, so that the cold air from without can not enter to press the warm air up the chimney. The remedy is to admit a small current of air from without.
Another cause is two chimneys in one room, or in rooms opening together, in which the draught in one is much stronger than in the other. In this case, the stronger draught will draw away from the weaker. The remedy is, for each room to have a proper supply of outside air; or, in a single room, to stop one of the chimneys.
Another cause is the too close vicinity of a hill or buildings higher than the top of the chimney, and the remedy for this is to raise the chimney.
Another cause is the descent, into unused fireplaces, of smoke from other chimneys near. The remedy is to close the throat of the unused chimney.
Another cause is a door opening toward the fireplace, on the same side of the room, so that its draught passes along the wall and makes a current that draws out the smoke. The remedy is to change the hanging of the door so as to open another way.
Another cause is strong winds. The remedy is a turn-cap on top of the chimney.
Another cause is the roughness of the inside of a chimney, or projections which impede the passage of the smoke. Every chimney should be built of equal dimensions from bottom to top, with no projections into it, with as few bends as possible, and with the surface of the inside as smooth as possible.
Another cause of poor draughts is openings into the chimney of chambers for stove-pipes. The remedy is to close them, or insert stove-pipes that are in use.
Another cause is the falling out of brick in some part of the chimney so that outer air is admitted. The remedy is to close the opening.
The draught of a stove may be affected by most of these causes. It also demands that the fireplace have a tight fire-board, or that the throat he carefully filled. For neglecting this, many a good stove has been thrown aside and a poor one taken in its place.
If all young women had committed to memory these causes of evil and their remedies, many a badly-built chimney might have been cured, and many smoke-drawn tears, sighs, ill-tempers, and irritating words avoided.
But there are dangers in this direction which demand special attention. Where one flue has two stoves or fireplaces, in rooms one above the other, in certain states of the atmosphere, the lower room, being the warmer, the colder air and carbonic acid in the room above will pass down into the lower room through the opening for the stove or the fireplace.
This occurred not long since in a boarding-school, when the gas in a room above flowed into a lower one, and suffocated several to death. This room had no mode of ventilation, and several persons slept in it, and were thus stifled. Professor Brewer states a similar case in the family of a relative. An anthracite stove was used in the upper room; and on one still, close night, the gas from this stove descended through the flue and the opening into a room below, and stifled two persons to insensibility, though, by proper efforts, their lives were saved. Many such cases have occurred where rooms have been thus filled with poisonous gases, and servants and children destroyed, or their constitutions injured, simply because housekeepers are not properly instructed in this important branch of their profession.
FURNACES.
There is no improved mechanism in the economy of domestic life requiring more intelligent management than furnaces. Let us then consider some of the principles involved.
The earth is heated by radiation from the sun. The air is not warmed by the passage of the sun's heat through it, but by convection from the earth, in the same way that it is warmed by the surfaces of stoves. The lower stratum of air is warmed by the earth and by objects which have been warmed by radiated heat from the sun. The particles of air thus heated expand, become lighter, and rise, being replaced by the descent of the cooler and heavier particles from above, which, on being warmed also rise, and give place to others. Owing to this process, the air is warmest nearest the earth, and grows cooler as height increases.
The air has a strong attraction for water, and always holds a certain quantity as invisible vapor. The warmer the air, the more moisture it demands, and it will draw it from all objects within reach. The air holds water according to its temperature. Thus, at fifty-two degrees, Fahrenheit's thermometer, it holds half the moisture it can sustain; but at thirty-six degrees, it will hold only one eighty-sixth part. The earth and all plants and trees are constantly sending out moisture; and when the air has received all it can hold, without depositing it as dew, it is said to be saturated, and the point of temperature at which dew begins to form, by condensation, upon the surface of the earth and its vegetation, is called the dew-point. When air, at a given temperature, has only forty per cent of the moisture it requires for saturation, it is said to be dry. In a hot summer day, the air will hold far more moisture than in cool days. In summer, out-door air rarely holds less than half its volume of water. In 1838, at Cambridge, Massachusetts, and New-Haven, Connecticut, at seventy degrees, Fahrenheit, the air held eighty per cent of moisture.
In New Orleans, the air often retains ninety per cent of the moisture it is capable of holding; and in cool days at the North, in foggy weather, the air is sometimes wholly saturated.
When air holds all the moisture it can, without depositing dew, its moisture is called 100. When it holds three fourths of this, it is said to be at seventy-five per cent. When it holds only one half, it is at fifty per cent. When it holds only one fourth, it is at twenty-five per cent, etc.
Sanitary observers teach that the proper amount of moisture in the air ranges from forty to seventy per cent of saturation.
Now, furnaces, which are of course used only in winter, receive outside air at a low temperature, holding little moisture; This it sucks up, like a sponge, from the walls and furniture of a house. If it is taken into the human lungs, it draws much of its required moisture from the body, often causing dryness of lips and throat, and painfully affecting the lungs. Prof. Brewer, of the Scientific School of New-Haven, who has experimented extensively on this subject, states that, while forty per cent of moisture is needed in air to make it healthful, most stoves and furnaces do not, by any contrivances, supply one half of this, or not twenty per cent. He says most furnace-heated air is dryer than is ever breathed in the hottest deserts of Sahara.
Thus, for want of proper instruction, most American housekeepers not only poison their families with carbonic acid and starve them for want of oxygen, but also diminish health and comfort for want of a due supply of moisture in the air. And often when a remedy is sought, by evaporating water in the furnace, it is without knowing that the amount evaporated depends, not on the quantity of water in the vessel, but on the extent of evaporating surface exposed to the air. A quart of water in a wide shallow pan will give more moisture than two gallons with a small surface exposed to heat.
There is also no little wise economy in expense attained by keeping a proper supply of moisture in the air. For it is found that the body radiates its heat less in moist than in dry air, so that a person feels as warm at a lower temperature when the air has a proper supply of moisture, as in a much higher temperature of dry air. Of course, less fuel is needed to warm a house when water is evaporated in stove and furnace-heated rooms. It is said by those who have experimented, that the saving in fuel is twenty per cent when the air is duly supplied with moisture.
There is a very ingenious instrument, called the hygrodeik, which indicates the exact amount of moisture in the air. It consists of two thermometers side by side, one of which has its bulb surrounded by floss-silk wrapping, which is kept constantly wet by communication with a cup of water near it. The water around the bulb evaporates just in proportion to the heat of the air around it. The changing of water to vapor draws heat from the nearest object, and this being the bulb of the thermometer, the mercury is cooled and sinks. Then the difference between the two thermometers shows the amount of moisture in the air by a pointer on a dial-plate constructed by simple mechanism for this purpose.
There is one very important matter in regard to the use of furnaces, which is thus stated by Professor Brewer:
"I think it is a well-established fact that carbonic oxide will pass through iron. It is always formed in great abundance in any anthracite fire, but especially in anthracite stoves and furnaces. Moreover, furnaces always leak, more or less; how much they leak depending on the care and skill with which they are managed. Carbonic oxide is much more poisonous than carbonic acid. Doubtless some carbonic oxide finds its way into all furnace-heated houses, especially where anthracite is used; the amount varying with the kind of furnace and its management. As to how much escapes into a room, and its specific effect upon the health of its occupants, we have no accurate data, no analysis to show the quantity, and no observations to show the relation between the quantity inhaled and the health of those exposed; all is mere conjecture upon this point; but the inference is very strong that it has a very injurious effect, producing headaches, weariness, and other similar symptoms.
"Recent pamphlets lay the blame of all the bad effects of anthracite furnaces and stoves to the carbonic oxide mingled in the air. I think these pamphlets have a bad influence. Excessive dryness also has bad effects. So also the excessive heat in the evenings and coolness in the mornings has a share in these evils. But how much in addition is owing to carbonic oxide, we can not know, until we know something of the actual amount of this gas in rooms, and as yet we know absolutely nothing definite. In fact, it will be a difficult thing to prove."
There are other difficulties connected with furnaces which should be considered. It is necessary to perfect health that an equal circulation of the blood be preserved. The greatest impediment to this is keeping the head warmer than the feet. This is especially to be avoided in a nation where the brain is by constant activity drawing the blood from the extremities. And nowhere is this more important than in schools, churches, colleges, lecture and recitation-rooms, where the brain is called into active exercise. And yet, furnace-heated rooms always keep the feet in the coldest air, on cool floors, while the head is in the warmest air.
Another difficulty is the fact that all bodies tend to radiate their heat to each other, till an equal temperature exists. Thus, the human body is constantly radiating its heat to the walls, floors, and cooler bodies around. At the same time, a thermometer is affected in the same way, radiating its heat to cooler bodies around, so that it always marks a lower degree of heat than actually exists in the warm air around it. Owing to these facts, the injected air of a furnace is always warmer than is good for the lungs, and much warmer than is ever needed in rooms warmed by radiation from fires or heated surfaces. The cooler the air we inspire, the more oxygen is received, the faster the blood circulates, and the greater is the vigor imparted to brain, nerves, and muscles.
Scientific men have been contriving various modes of meeting these difficulties, and at the close of this volume some results will be given to aid a woman in selecting and managing the most healthful and economical furnace, or in providing some better method of warming a house. Some account will also be given of the danger involved in gas-stoves, and some other recent inventions for cooking and heating.